Radiation Induced Surface Modification of Nanoparticles and Their Dispersion in the Polymer Matrix

Author:

Fu Zhiang,Gu Xiaoying,Hu Lingmin,Li Yongjin,Li JingyeORCID

Abstract

Polymer grafted inorganic nanoparticles attract significant attention, but pose challenges because of the complexity. In this work, a facile strategy to the graft polymer onto the surface of nanoparticles have been introduced. The vinyl functionalized SiO2 nanoparticles (NPs) were first prepared by the surface modification of the unmodified SiO2 using γ-methacryloxy propyl-trimethoxylsilane. The NPs were then mixed with polyvinylidene fluoride (PVDF), which was followed by the Co-60 Gamma radiation at room temperature. PVDF molecular chains were chemically grafted onto the surface of SiO2 nanoparticles by the linking of the double bond on the NPs. The graft ratio of PVDF on SiO2 NPs surface can be precisely controlled by adjusting the absorbed dose and reactant feed ratio (maximum graft ratio was 31.3 wt%). The strategy is simple and it should be applied to the surface modification of many other nanoparticles. The prepared PVDF-grafted SiO2 NPs were then dispersed in the PVDF matrix to make the nanocomposites. It was found that the modified NPs can be precisely dispersed into the PVDF matrix, as compared with pristine silica. The filling content of modifications SiO2 NPs on the PVDF nanocomposites is almost doubled than the pristine SiO2 counterpart. Accordingly, the mechanical property of the nanocomposites is significantly improved.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3