Role of Substrate in Au Nanoparticle Decoration by Electroless Deposition

Author:

Bruno LucaORCID,Urso Mario,Shacham-Diamand Yosi,Priolo Francesco,Mirabella Salvo

Abstract

Decoration of nanostructures is a promising way of improving performances of nanomaterials. In particular, decoration with Au nanoparticles is considerably efficient in sensing and catalysis applications. Here, the mechanism of decoration with Au nanoparticles by means of low-cost electroless deposition (ELD) is investigated on different substrates, demonstrating largely different outcomes. ELD solution with Au potassium cyanide and sodium hypophosphite, at constant temperature (80 °C) and pH (7.5), is used to decorate by immersion metal (Ni) or semiconductor (Si, NiO) substrates, as well as NiO nanowalls. All substrates were pre-treated with a hydrazine hydrate bath. Scanning electron microscopy and Rutherford backscattering spectrometry were used to quantitatively analyze the amount, shape and size of deposited Au. Au nanoparticle decoration by ELD is greatly affected by the substrates, leading to a fast film deposition onto metallic substrate, or to a slow cluster (50–200 nm sized) formation on semiconducting substrate. Size and density of resulting Au clusters strongly depend on substrate material and morphology. Au ELD is shown to proceed through a galvanic displacement on Ni substrate, and it can be modeled with a local cell mechanism widely affected by the substrate conductivity at surface. These data are presented and discussed, allowing for cheap and reproducible Au nanoparticle decoration on several substrates.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3