Atomic Layer Deposition of Mixed-Layered Aurivillius Phase on TiO2 Nanotubes: Synthesis, Characterization and Photoelectrocatalytic Properties

Author:

Orudzhev FaridORCID,Ramazanov ShikhgasanORCID,Sobola DinaraORCID,Isaev Abdulgalim,Wang ChuanyiORCID,Magomedova Asiyat,Kadiev Makhmud,Kaviyarasu Kasinathan

Abstract

For the first time, one-dimensional phase-modulated structures consisting of two different layered Aurivillius phases with alternating five and six perovskite-like layers were obtained by atomic layer deposition (ALD) on the surface of TiO2 nanotubes (Nt). It was shown that the use of vertically oriented TiO2 Nt as the substrate and the ALD technology of a two-layer Bi2O3-FeOx sandwich-structure make it possible to obtain a layered structure due to self-organization during annealing. A detailed study by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the coating is conformal. Raman spectroscopic analysis indicated the structure of the layered Aurivillius phases. Transient photocurrent responses under Ultraviolet–Visible (UV-Vis) light irradiation show that the ALD coating benefits the efficiency of photon excitation of electrons. The results of the photoelectrocatalytic experiments (PEC) with methyl orange degradation as a model demonstrate the significant potential of the synthesized structure as a photocatalyst. Photoluminescent measurement showed a decrease in the probability of recombination of photogenerated electron–hole pairs for ALD-coated TiO2 Nt, which demonstrates the high potential of these structures for use in photocatalytic and photoelectrochemical applications.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3