Improved Hardness and Thermal Stability of Nanocrystalline Nickel Electrodeposited with the Addition of Cysteine

Author:

Kolonits TamásORCID,Czigány ZsoltORCID,Péter LászlóORCID,Bakonyi ImreORCID,Gubicza JenőORCID

Abstract

Experiments were conducted for the study of the effect of cysteine addition on the microstructure of nanocrystalline Ni films electrodeposited from a nickel sulfate-based bath. Furthermore, the thermal stability of the nanostructure of Ni layers processed with cysteine addition was also investigated. It was found that with increasing cysteine content in the bath, the grain size decreased, while the dislocation density and the twin fault probability increased. Simultaneously, the hardness increased due to cysteine addition through various effects. Saturation in the microstructure and hardness was achieved at cysteine contents of 0.3–0.4 g/L. Moreover, the texture changed from (220) to (200) with increasing the concentration of cysteine. The hardness of the Ni films processed with the addition of 0.4 g/L cysteine (∼6800 MPa) was higher than the values obtained for other additives in the literature (<6000 MPa). This hardness was further enhanced to ∼8400 MPa when the Ni film was heated up to 500 K. It was revealed that the hardness remained as high as 6000 MPa even after heating up to 750 K, while for other additives, the hardness decreased below 3000 MPa at the same temperature.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3