Growth of Porous Ag@AuCu Trimetal Nanoplates Assisted by Self-Assembly

Author:

Zhang Wan-ChengORCID,Luoshan Meng-Dai,Wang Peng-Fei,Huang Chu-Yun,Wang Qu-Quan,Ding Si-Jing,Zhou LiORCID

Abstract

The self-assembly process of metal nanoparticles has aroused wide attention due to its low cost and simplicity. However, most of the recently reported self-assembly systems only involve two or fewer metals. Herein, we first report a successful synthesis of self-assembled Ag@AuCu trimetal nanoplates in aqueous solution. The building blocks of multibranched AuCu alloy nanocrystals were first synthesized by a chemical reduction method. The growth of Ag onto the AuCu nanocrystals in the presence of hexadecyltrimethylammonium chloride (CTAC) induces a self-assembly process and formation of Ag@AuCu trimetal nanoplates. These nanoplates with an average side length of over 2 μm show a porous morphology and a very clear boundary with the branches of the as-prepared AuCu alloy nanocrystals extending out. The shape and density of the Ag@AuCu trimetal nanoplates can be controlled by changing the reaction time and the concentration of silver nitrate. The as-assembled Ag@AuCu nanoplates are expected to have the potential for wide-ranging applications in surface-enhanced Raman scattering (SERS) and catalysis owing to their unique structures.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3