Photonic–Plasmonic Nanostructures for Solar Energy Utilization and Emerging Biosensors

Author:

Tran Van TanORCID,Nguyen Huu-QuangORCID,Kim Young-MiORCID,Ok Gyeongsik,Lee Jaebeom

Abstract

Issues related to global energy and environment as well as health crisis are currently some of the greatest challenges faced by humanity, which compel us to develop new pollution-free and sustainable energy sources, as well as next-generation biodiagnostic solutions. Optical functional nanostructures that manipulate and confine light on a nanometer scale have recently emerged as leading candidates for a wide range of applications in solar energy conversion and biosensing. In this review, recent research progress in the development of photonic and plasmonic nanostructures for various applications in solar energy conversion, such as photovoltaics, photothermal conversion, and photocatalysis, is highlighted. Furthermore, the combination of photonic and plasmonic nanostructures for developing high-efficiency solar energy conversion systems is explored and discussed. We also discuss recent applications of photonic–plasmonic-based biosensors in the rapid management of infectious diseases at point-of-care as well as terahertz biosensing and imaging for improving global health. Finally, we discuss the current challenges and future prospects associated with the existing solar energy conversion and biosensing systems.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3