Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume

Author:

Muzenski ScottORCID,Flores-Vivian Ismael,Farahi BehrouzORCID,Sobolev Konstantin

Abstract

Ultrahigh performance concrete (UHPC), which is characterized by dense microstructure and strain hardening behavior, provides exceptional durability and a new level of structural response to modern structures. However, the design of the UHPC matrix often requires the use of high quantities of supplementary cementitious materials, such as silica fume, which can significantly increase the cost and elevate the production expenses associated with silica fume handling. This paper demonstrates that a fiber-reinforced composite with properties similar to conventional UHPC can be realized with very low quantities of silica fume, such as 1% by mass of cementitious materials. The proposed UHPC is based on reference Type I cement or Type V Portland cement with very low C3A (<1%) that also complies with Class H oil well cement specification, silica fume, small quantities of Al2O3 nanofibers, and high-density polyethylene or polyvinyl alcohol macro fibers. Previous research has demonstrated that nanofibers act as a seeding agent to promote the formation of compact and nanoreinforced calcium silicate hydrate (C-S-H) clusters within the interparticle and nanofiber spaces, providing a nanoreinforcing effect. This approach produces a denser and stronger matrix. This research expands upon this principle by adding synthetic fibers to ultrahigh strength cement-based composites to form a material with properties approaching that of UHPC. It is indicated that the developed material provides improved strain hardening and compressive strength at the level of 160 MPa.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3