Effective Enrichment and Quantitative Determination of Trace Hg2+ Ions Using CdS-Decorated Cellulose Nanofibrils

Author:

Ahmad Hilal,Sharfan Ibtisam I. Bin,Khan Rais Ahmad,Alsalme AliORCID

Abstract

Water pollution caused by metal contamination is of serious concern. Direct determination of trace metal ions in real water samples remains challenging. A sample preparation technique is a prerequisite before analysis. Herein, we report the facile water-based hydrothermal synthesis of cadmium sulfide nanoparticles on a cellulose nanofiber surface to prepare a new adsorbent material. Field emission scanning electron microscopy, high-resolution tunneling electron microscopy, elemental mapping and X-ray photoelectron microscopy were used to characterize the surface morphology, structural determination, elemental composition and nature of bonding. The nanoadsorbent (cadmium-sulfide-decorated cellulose nanofibrils (CNFs@CdS)) was employed for the solid-phase extraction and determination of trace Hg(II) from aqueous media. The experimental conditions were optimized systematically and the data show a good Hg(II) adsorption capacity of 126.0 mg g−1. The CNFs@CdS adsorbent shows the selective removal of Hg(II) accordingly to the hard and soft acid–base theory of metal–ligand interaction. A high preconcentration limit of 0.36 µg L−1 was obtained with a preconcentration factor of 580. The lowest level of trace Hg(II) concentration, which was quantitatively analyzed by the proposed method, was found to be 0.06 µg L−1. No significant interferences from the sample matrix were observed in the extraction of Hg(II). Analysis of the standard reference material (SRM 1641d) was carried out to validate the proposed methodology. Good agreement between the certified and observed values indicates the applicability of the developed methodology for the analysis of Hg(II) in tap water, river water and industrial wastewater samples.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference42 articles.

1. Global Freshwater Resources: Soft-Path Solutions for the 21st Century

2. Technology for sustainability: the role of onsite, small and community scale technology

3. Drinking Water, Fact Sheet No. 391, in, Media Centrehttp://www.who.int/mediacentre/factsheets

4. The United Nations World Water Development Report 2015: Water for a Sustainable World;Connor,2015

5. Heavy metal toxicity and the environment;Tchounwou;Exp. Suppl.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3