Abstract
We perform a numerical simulation of the effects of an orthogonal magnetic field on charge transport and shot noise in an armchair graphene ribbon with a lattice of antidots. This study relies on our envelope-function based code, in which the presence of antidots is simulated through a nonzero mass term and the magnetic field is introduced with a proper choice of gauge for the vector potential. We observe that by increasing the magnetic field, the energy gap present with no magnetic field progressively disappears, together with features related to commensurability and quantum effects. In particular, we focus on the behavior for high values of the magnetic field: we notice that when it is sufficiently large, the effect of the antidots vanishes and shot noise disappears, as a consequence of the formation of edge states crawling along the boundaries of the structure without experiencing any interaction with the antidots.
Subject
General Materials Science,General Chemical Engineering
Reference68 articles.
1. The electronic properties of graphene
2. The rise of graphene
3. Graphene: Carbon in Two Dimensions;Katsnelson,2012
4. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport;Foa Torres,2020
5. Physics and Chemistry of Graphene: Graphene to Nanographene;Enoki,2020
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献