Convolutional Neural Network-Based Machine Vision for Non-Destructive Detection of Flooding in Packed Columns

Author:

Liu Yi1ORCID,Jiang Yuxin1,Gao Zengliang1ORCID,Liu Kaixin2ORCID,Yao Yuan3ORCID

Affiliation:

1. Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310023, China

2. Shanxi Key Laboratory of Signal Capturing & Processing, North University of China, Taiyuan 030051, China

3. Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan

Abstract

In chemical processes, packed columns are frequently employed in various unit operations. However, the flow rates of gas and liquid in these columns are often constrained by the risk of flooding. To ensure the safe and efficient operation of packed columns, it is crucial to detect flooding in real time. Conventional flooding monitoring methods rely heavily on manual visual inspections or indirect information from process variables, which limit the real-time accuracy of results. To address this challenge, we proposed a convolutional neural network (CNN)-based machine vision approach for non-destructive detection of flooding in packed columns. Real-time images of the packed column were captured using a digital camera and analyzed with a CNN model, which was been trained on a dataset of recorded images to identify flooding. The proposed approach was compared with deep belief networks and an integrated approach of principal component analysis and support vector machines. The feasibility and advantages of the proposed method were demonstrated through experiments on a real packed column. The results showed that the proposed method provides a real-time pre-alarm approach for detecting flooding, enabling process engineers to quickly respond to potential flooding events.

Funder

National Natural Science Foundation of China

National Science and Technology Council, ROC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3