Experimental and Numerical Analysis of the Clearance Effects between Blades and Hub in a Water Wheel Used for Power Generation

Author:

Feng Wenjin,Zheng Yuan,Yu AnORCID,Tang Qinghong

Abstract

Water wheels used for power generation are applied to tailwater and ultra-low head sites. In this research, the VOF method and the standard k-ε turbulence model are utilized to predict the performance and transient flow fields of water wheels. The numerical results show a reasonable agreement with the experimental data. This work aims at improving the performance and increasing the internal fluid stability of the water wheel, based on the entropy production approach to research the detailed distribution of energy loss in the water wheel for power generation under the clearance effects between blades and hub. Under the same rotational speed, it is indicated that by setting appropriate clearance, the performance of the water wheel can be elevated by 8.7%, targeted elimination of vortical flow, improving flow adaptability, attenuating to a great extent of the backwater phenomenon, and reducing the fatigue damage of the hub and blade. Further, the interaction mechanism of vorticity–pressure which will induce irreversible energy loss of the water wheel under different clearance effects is investigated. Therefore, this research indicates that the entropy method can provide a theoretical reference and engineering guidance for the targeted optimization of water wheels.

Funder

National Key RESEARCH and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3