Affiliation:
1. Department of Healthcare Information Technology, Inje University, 197, Inje-ro, Gimhae-si 50834, Republic of Korea
Abstract
Background: Cardiovascular diseases (CVDs) are a leading cause of death worldwide. Deep learning methods have been widely used in the field of medical image analysis and have shown promising results in the diagnosis of CVDs. Methods: Experiments were performed on 12-lead electrocardiogram (ECG) databases collected by Chapman University and Shaoxing People’s Hospital. The ECG signal of each lead was converted into a scalogram image and an ECG grayscale image and used to fine-tune the pretrained ResNet-50 model of each lead. The ResNet-50 model was used as a base learner for the stacking ensemble method. Logistic regression, support vector machine, random forest, and XGBoost were used as a meta learner by combining the predictions of the base learner. The study introduced a method called multi-modal stacking ensemble, which involves training a meta learner through a stacking ensemble that combines predictions from two modalities: scalogram images and ECG grayscale images. Results: The multi-modal stacking ensemble with a combination of ResNet-50 and logistic regression achieved an AUC of 0.995, an accuracy of 93.97%, a sensitivity of 0.940, a precision of 0.937, and an F1-score of 0.936, which are higher than those of LSTM, BiLSTM, individual base learners, simple averaging ensemble, and single-modal stacking ensemble methods. Conclusion: The proposed multi-modal stacking ensemble approach showed effectiveness for diagnosing CVDs.
Funder
National Research Foundation of Korea
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献