Performance of Active-Quenching SPAD Array Based on the Tri-State Gates of FPGA and Packaged with Bare Chip Stacking

Author:

Liu Liangliang1,Lv Wenxing1,Liu Jian1,Zhang Xingan1,Liang Kun1,Yang Ru1,Han Dejun12

Affiliation:

1. College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

2. Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China

Abstract

The performance of an active-quenching single-photon avalanche diode (SPAD) array that is based on the tri-state gates of a field programmable gate array (FPGA) is presented. The array is implemented by stacking a bare 4 × 4 N-on-P SPAD array on a bare FPGA die, and the electrodes of the SPAD pixels and the I/O ports of the FPGA are connected through wire bonding within the same package. The active quenching action on each SPAD pixel is performed by using the properties of the tri-state gates of the FPGA. Digital signal processing, such as pulse counters, data encoders, and command interactions, is also performed by using the same FPGA. The breakdown voltage of the SPAD pixels, with an active area of 60 μm × 60 μm, is 47.2–48.0 V. When the device is reverse biased at a voltage of ~50.4 V, a response delay of ~50 ns, a dead time of 157 ns, a dark count rate of 2.44 kHz, and an afterpulsing probability of 6.9% are obtained. Its peak photon detection probability (PDP) reaches 17.0% at a peak wavelength of 760 nm and remains above 10% at 900 nm. This hybrid integrated SPAD array is reconfigurable and cost effective.

Funder

NSFC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3