EEG Signal Analysis for Diagnosing Neurological Disorders Using Discrete Wavelet Transform and Intelligent Techniques

Author:

Alturki Fahd A.ORCID,AlSharabi KhalilORCID,Abdurraqeeb Akram M.ORCID,Aljalal Majid

Abstract

Analysis of electroencephalogram (EEG) signals is essential because it is an efficient method to diagnose neurological brain disorders. In this work, a single system is developed to diagnose one or two neurological diseases at the same time (two-class mode and three-class mode). For this purpose, different EEG feature-extraction and classification techniques are investigated to aid in the accurate diagnosis of neurological brain disorders: epilepsy and autism spectrum disorder (ASD). Two different modes, single-channel and multi-channel, of EEG signals are analyzed for epilepsy and ASD. The independent components analysis (ICA) technique is used to remove the artifacts from EEG dataset. Then, the EEG dataset is segmented and filtered to remove noise and interference using an elliptic band-pass filter. Next, the EEG signal features are extracted from the filtered signal using a discrete wavelet transform (DWT) to decompose the filtered signal to its sub-bands delta, theta, alpha, beta and gamma. Subsequently, five statistical methods are used to extract features from the EEG sub-bands: the logarithmic band power (LBP), standard deviation, variance, kurtosis, and Shannon entropy (SE). Further, the features are fed into four different classifiers, linear discriminant analysis (LDA), support vector machine (SVM), k-nearest neighbor (KNN), and artificial neural networks (ANNs), to classify the features corresponding to their classes. The combination of DWT with SE and LBP produces the highest accuracy among all the classifiers. The overall classification accuracy approaches 99.9% using SVM and 97% using ANN for the three-class single-channel and multi-channel modes, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3