Rapid Growth of Tropical Cyclone Outer Size over the Western North Pacific

Author:

Li YiORCID,Tang YouminORCID,Wang Shuai,Li Xiaojing

Abstract

The concept of rapid growth (RG) of tropical cyclones (TCs) in the north Atlantic basin was recently proposed. RG can represent a dangerous change in TC structure because it can rapidly ramp up the TC destructive potential. However, the nature of RG behaviour remains obscure over the western north Pacific (WNP), where nearly one third of global TCs occur. In this study, TC RG in the WNP is investigated using TC best-tracks and reanalysis of data. We first define TC RG in the WNP as an increase of at least 84 km in the radius of a gale-force wind within 24 h, corresponding to the 90th percentile of all over-water changes. Monte Carlo experiments demonstrate the robustness of the threshold. Similar to that occurring in the north Atlantic, RG in the WNP is associated with the highest level of destructive potential. In addition, RG over the WNP occurs closer to the coast than for TCs in the Atlantic and more RG events in the WNP are accompanied by rapid intensification, which may significantly increase their destructive potential in a worst case scenario. Composite analysis shows that certain dynamic processes, such as radial inflow, may play an important role in the occurrence of RG. This study suggests that, apart from rapid intensification, TC RG is another important factor to consider for TC-related risk assessment in the WNP.

Funder

National Natural Science Foundation of China

Hohai University

Singapore Green Finance Centre

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In situ observation of ocean response to tropical cyclone in the western North Pacific during 2022;Frontiers in Marine Science;2024-09-12

2. Predictive Maintenance Application on Machine Overstrain Failure with Node-Red and Isolation Forest Anomaly Detection;2023 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3