MS4D-Net: Multitask-Based Semi-Supervised Semantic Segmentation Framework with Perturbed Dual Mean Teachers for Building Damage Assessment from High-Resolution Remote Sensing Imagery

Author:

He YongjunORCID,Wang JinfeiORCID,Liao Chunhua,Zhou XinORCID,Shan Bo

Abstract

In the aftermath of a natural hazard, rapid and accurate building damage assessment from remote sensing imagery is crucial for disaster response and rescue operations. Although recent deep learning-based studies have made considerable improvements in assessing building damage, most state-of-the-art works focus on pixel-based, multi-stage approaches, which are more complicated and suffer from partial damage recognition issues at the building-instance level. In the meantime, it is usually time-consuming to acquire sufficient labeled samples for deep learning applications, making a conventional supervised learning pipeline with vast annotation data unsuitable in time-critical disaster cases. In this study, we present an end-to-end building damage assessment framework integrating multitask semantic segmentation with semi-supervised learning to tackle these issues. Specifically, a multitask-based Siamese network followed by object-based post-processing is first constructed to solve the semantic inconsistency problem by refining damage classification results with building extraction results. Moreover, to alleviate labeled data scarcity, a consistency regularization-based semi-supervised semantic segmentation scheme with iteratively perturbed dual mean teachers is specially designed, which can significantly reinforce the network perturbations to improve model performance while maintaining high training efficiency. Furthermore, a confidence weighting strategy is embedded into the semi-supervised pipeline to focus on convincing samples and reduce the influence of noisy pseudo-labels. The comprehensive experiments on three benchmark datasets suggest that the proposed method is competitive and effective in building damage assessment under the circumstance of insufficient labels, which offers a potential artificial intelligence-based solution to respond to the urgent need for timeliness and accuracy in disaster events.

Funder

Natural Science and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference45 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3