Improving GEDI Forest Canopy Height Products by Considering the Stand Age Factor Derived from Time-Series Remote Sensing Images: A Case Study in Fujian, China

Author:

Zhou XiaochengORCID,Hao Youzhuang,Di LipingORCID,Wang Xiaoqin,Chen Chongcheng,Chen Yunzhi,Nagy GáborORCID,Jancso Tamas

Abstract

Forest canopy height plays an important role in forest resource management and conservation. The accurate estimation of forest canopy height on a large scale is important for forest carbon stock, biodiversity, and the carbon cycle. With the technological development of satellite-based LiDAR, it is possible to determine forest canopy height over a large area. However, the forest canopy height that is acquired by this technology is influenced by topography and climate, and the canopy height that is acquired in complex subtropical mountainous regions has large errors. In this paper, we propose a method for estimating forest canopy height by combining long-time series Landsat images with GEDI satellite-based LiDAR data, with Fujian, China, as the study area. This approach optimizes the quality of GEDI canopy height data in topographically complex areas by combining stand age and tree height, while retaining the advantage of fast and effective forest canopy height measurements with satellite-based LiDAR. In this study, the growth curves of the main forest types in Fujian were first obtained by using a large amount of forest survey data, and the LandTrendr algorithm was used to obtain the forest age distribution in 2020. The obtained forest age was then combined with the growth curves of each forest type in order to determine the tree height distribution. Finally, the obtained average tree heights were merged with the GEDI_V27 canopy height product in order to create a modified forest canopy height model (MGEDI_V27) with a 30 m spatial resolution. The results showed that the estimated forest canopy height had a mean of 15.04 m, with a standard deviation of 4.98 m. In addition, we evaluated the accuracy of the GEDI_V27 and the MGEDI_V27 using the sample dataset. The MGEDI_V27 had a higher accuracy (R2 = 0.67, RMSE = 2.24 m, MAE = 1.85 m) than the GEDI_V27 (R2 = 0.39, RMSE = 3.35 m, MAE = 2.41 m). R2, RMSE, and MAE were improved by 71.79%, 33.13%, and 22.53%, respectively. We also produced a forest age distribution map of Fujian for the year 2020 and a forest disturbance map of Fujian for the past 32 years. The research results can provide decision support for forest ecological protection and management and for carbon sink analysis in Fujian.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3