A Novel Algorithm of Haze Identification Based on FY3D/MERSI-II Remote Sensing Data

Author:

Si Yidan,Chen LinORCID,Zheng ZhaojunORCID,Yang LeikuORCID,Wang Fu,Xu Na,Zhang Xingying

Abstract

Since 2013, frequent haze pollution events in China have been attracting public attention, generating a demand to identify the haze areas using satellite observations. Many studies of haze recognition algorithms are based on observations from space-borne imagers, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Advanced Himawari Imager (AHI). Since the haze pixels are frequently misidentified as clouds in the official cloud detection products, these algorithms mainly focus on recovering them from clouds. There are just a few studies that provide a more precise distinction between haze and clear pixels. The Medium Resolution Imaging Spectrometer II (MERSI-II), the imager aboard the FY-3D satellite, has similar bands to those of MODIS, hence, it appears to have equivalent application potential. This study proposes a novel MERSI haze mask (MHAM) algorithm to directly categorize haze pixels in addition to cloudy and clear ones. This algorithm is based on the fact that cloudy and clear pixels exhibit opposing visible channel reflectance and infrared channel brightness temperature characteristics, and clear pixels are relative brighter, and as well as this, there is a positive difference between their apparent reflectance values, at 0.865 μm and 1.64 μm, respectively, over bright surfaces. Compared with the Aqua/MODIS and MERSI-II official cloud detection products, these two datasets treat the dense aerosol loadings as certain clouds, possible clouds and possible clear pixels, and they treat distinguished light or moderate haze as possible clouds, possible clear pixels and certainly clear pixels, while the novel algorithm is capable of demonstrating the haze region’s boundary in a manner that is more substantially consistent with the true color image. Using the PM2.5 (particle matter with a diameter that is less than 2.5 μm) data monitored by the national air quality monitoring stations as the test source, the results indicated that when the ground-based PM2.5 ≥ 35 μg/cm3 is considered to be haze days, the samples with the recognition rate that is higher than 85% accounted for 72.22% of the total samples. When PM2.5 ≥ 50 μg/cm3 is considered as haze days, 83.33% of the samples had an identification rate that was higher than 85%. A cross-comparison with similar research methods showed that the method proposed in this study had better sensitivity to bright surface clear and haze areas. This study will provide a haze mask for subsequent quantitative inversion of aerosol characteristics, and it will further exert the application benefits of MERSI-II instrument aboard on FY3D satellite.

Funder

National Key Research and Development Program of China

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3