Contrastive Domain Adaptation-Based Sparse SAR Target Classification under Few-Shot Cases

Author:

Bi HuiORCID,Liu Zehao,Deng Jiarui,Ji Zhongyuan,Zhang Jingjing

Abstract

Due to the imaging mechanism of synthetic aperture radar (SAR), it is difficult and costly to acquire abundant labeled SAR images. Moreover, a typical matched filtering (MF) based image faces the problems of serious noise, sidelobes, and clutters, which will bring down the accuracy of SAR target classification. Different from the MF-based result, a sparse image shows better quality with less noise and higher image signal-to-noise ratio (SNR). Therefore, theoretically using it for target classification will achieve better performance. In this paper, a novel contrastive domain adaptation (CDA) based sparse SAR target classification method is proposed to solve the problem of insufficient samples. In the proposed method, we firstly construct a sparse SAR image dataset by using the complex image based iterative soft thresholding (BiIST) algorithm. Then, the simulated and real SAR datasets are simultaneously sent into an unsupervised domain adaptation framework to reduce the distribution difference and obtain the reconstructed simulated SAR images for subsequent target classification. Finally, the reconstructed simulated images are manually labeled and fed into a shallow convolutional neural network (CNN) for target classification along with a small number of real sparse SAR images. Since the current definition of the number of small samples is still vague and inconsistent, this paper defines few-shot as less than 20 per class. Experimental results based on MSTAR under standard operating conditions (SOC) and extended operating conditions (EOC) show that the reconstructed simulated SAR dataset makes up for the insufficient information from limited real data. Compared with other typical deep learning methods based on limited samples, our method is able to achieve higher accuracy especially under the conditions of few shots.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Aeronautical Science Foundation of China

University Joint Innovation Fund Project of CALT

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference34 articles.

1. Curlander, J.C., and Mcdonough, R.N. (1991). Synthetic Aperture Radar: Systems and Signal Processing, Wiley.

2. Henderson, F.M., and Lewis, A.J. (1998). Principle and Application of Imaging Radar, John Wiley and Sons.

3. An overview of automatic target recognition;Dugeon;Linc. Lab. J.,1993

4. Discriminating targets from clutter;Kreithen;Linc. Lab. J.,1993

5. Reducing the dimensionality of data with neural networks;Hinton;Science,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3