A Multiscale Cross Interaction Attention Network for Hyperspectral Image Classification

Author:

Liu DongxuORCID,Wang Yirui,Liu Peixun,Li QingqingORCID,Yang HangORCID,Chen Dianbing,Liu ZhichaoORCID,Han Guangliang

Abstract

Convolutional neural networks (CNNs) have demonstrated impressive performance and have been broadly applied in hyperspectral image (HSI) classification. However, two challenging problems still exist: the first challenge is that redundant information is averse to feature learning, which damages the classification performance; the second challenge is that most of the existing classification methods only focus on single-scale feature extraction, resulting in underutilization of information. To resolve the two preceding issues, this article proposes a multiscale cross interaction attention network (MCIANet) for HSI classification. First, an interaction attention module (IAM) is designed to highlight the distinguishability of HSI and dispel redundant information. Then, a multiscale cross feature extraction module (MCFEM) is constructed to detect spectral–spatial features at different scales, convolutional layers, and branches, which can increase the diversity of spectral–spatial features. Finally, we introduce global average pooling to compress multiscale spectral–spatial features and utilize two fully connection layers, two dropout layers to obtain the output classification results. Massive experiments on three benchmark datasets demonstrate the superiority of our presented method compared with the state-of-the-art methods.

Funder

Department of Science and Technology of Jilin Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference75 articles.

1. Hyperspectral Anomaly Detection via Global and Local Joint Modeling of Background;Wu;IEEE Trans. Signal Process.,2019

2. Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images;Du;IEEE Trans. Geosci. Remote. Sens.,2019

3. Laurin, G.V., Chan, J.C.-W., Chen, Q., Lindsell, J., Coomes, D.A., Guerriero, L., Del Frate, F., Miglietta, F., and Valentini, R. (2014). Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data. PLoS ONE, 9.

4. Du, H., Qi, H., Wang, X., Ramanath, R., and Snyder, W. (2003, January 15–17). Band selection using independent component analysis for hyperspectral image processing. Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, Washington, DC, USA.

5. Classification of Hyperspectral Images with Regularized Linear Discriminant Analysis;Bandos;IEEE Trans. Geosci. Remote. Sens.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3