Fusing Multiple Land Cover Products Based on Locally Estimated Map-Reference Cover Type Transition Probabilities

Author:

Zhang WangleORCID,Wang Jiwen,Lin Hate,Cong MingORCID,Wan Yue,Zhang Jingxiong

Abstract

There are a variety of land cover products generated from remote-sensing images. However, misclassification errors in individual products and inconsistency among them undermine their utilities for research and other applications. While it is worth developing advanced pattern classifiers and utilizing the images of finer spatial, temporal, and/or spectral resolution for increased classification accuracy, it is also sensible to increase map classification accuracy through effective map fusion by exploiting complementarity among multi-source products over a study area. This paper presents a novel fusion method that works by weighting multiple source products based on their map-reference cover type transition probabilities, which are predicted using random forest for individual map pixels. The proposed method was tested and compared with three alternatives: consensus-based weighting, random forest, and locally modified Dempster–Shafer evidential reasoning, in a case study, over Shaanxi province, China. For this case study, three types of land cover products (GlobeLand30, FROM-GLC, and GLC_FCS30) of two nominal years (2010 and 2020) were used as the base maps for fusion. Reference sample data for model training and testing were collected following a robust stratified random sampling design that allows for augmenting reference data flexibly. Accuracy assessments show that overall accuracies (OAs) of fused land cover maps have been improved (1~9% in OAs), with the proposed method outperforming other methods by 2~8% in OAs. The proposed method does not need to have the base products’ classification systems harmonized beforehand, thus being robust and highly recommendable for fusing land cover products.

Funder

Fundamental Research Funds for the Central Universities, CHD

Shaanxi Forestry Science and Technology Innovation Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3