Abstract
Few-shot hyperspectral classification is a challenging problem that involves obtaining effective spatial–spectral features in an unsupervised or semi-supervised manner. In recent years, as a result of the development of computer vision, deep learning techniques have demonstrated their superiority in tackling the problems of hyperspectral unmixing (HU) and classification. In this paper, we present a new semi-supervised pipeline for few-shot hyperspectral classification, where endmember abundance maps obtained by HU are treated as latent features for classification. A cube-based attention 3D convolutional autoencoder network (CACAE), is applied to extract spectral–spatial features. In addition, an attention approach is used to improve the accuracy of abundance estimation by extracting the diagnostic spectral features associated with the given endmember more effectively. The endmember abundance estimated by the proposed model outperforms other convolutional neural networks (CNNs) with respect to the root mean square error (RMSE) and abundance spectral angle distance (ASAD). Classification experiments are performed on real hyperspectral datasets and compared to several supervised and semi-supervised models. The experimental findings demonstrate that the proposed approach has promising potential for hyperspectral feature extraction and has better performance relative to CNN-based supervised classification under small-sample conditions.
Funder
National Key Research and Development Program of China
Subject
General Earth and Planetary Sciences
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献