On the Interplay between Desert Dust and Meteorology Based on WRF-Chem Simulations and Remote Sensing Observations in the Mediterranean Basin

Author:

Rizza UmbertoORCID,Avolio Elenio,Morichetti MauroORCID,Di Liberto Luca,Bellini Annachiara,Barnaba FrancescaORCID,Virgili Simone,Passerini GiorgioORCID,Mancinelli EnricoORCID

Abstract

In this study, we investigate a series of Saharan dust outbreaks toward the Mediterranean basin that occurred in late June 2021. In particular, we analyze the effect of mineral dust aerosols on radiation and cloud properties (direct, semi-direct and indirect effects), and in turn, on meteorological parameters. This is achieved by running the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) over a domain covering North Africa and the Central Mediterranean Basin. The simulations were configured using a gradual coupling strategy between the GOCART aerosol model and the Goddard radiation and microphysics schemes available in the WRF-Chem package. A preliminary evaluation of the model performances was conducted in order to verify its capability to correctly reproduce the amount of mineral dust loaded into the atmosphere within the spatial domain considered. To this purpose, we used a suite of experimental data from ground- and space-based remote sensing measurements. This comparison highlighted a model over-estimation of aerosol optical properties to the order of 20%. The evaluation of the desert dust impact on the radiation budget, achieved by comparing the uncoupled and the fully coupled (aerosol–radiation–clouds) simulation, shows that mineral dust induces a net (shortwave–longwave) cooling effect to the order of −10 W m−2. If we consider the net dust radiative forcing, the presence of dust particles induces a small cooling effect at the top of the atmosphere (−1.2 W m−2) and a stronger cooling at the surface (−14.2 W m−2). At the same time, analysis of the perturbation on the surface energy budget yields a reduction of −7 W m−2 when considering the FULL-coupled simulation, a positive perturbation of +3 W m−2 when only considering microphysics coupling and −10.4 W m−2 when only considering radiation coupling. This last result indicates a sort of “superposition” of direct, indirect and semi-direct effects of dust on the radiation budget. This study shows that the presence of dust aerosols significantly influences radiative and cloud properties and specifically the surface energy budget. This suggests (i) that dust effects should be considered in climate models in order to increase the accuracy of climate predictions over the Mediterranean region and (ii) the necessity of performing fully coupled simulations including aerosols and their effects on meteorology at a regional scale.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3