What Are We Missing? Occlusion in Laser Scanning Point Clouds and Its Impact on the Detection of Single-Tree Morphologies and Stand Structural Variables

Author:

Mathes ThomasORCID,Seidel DominikORCID,Häberle Karl-Heinz,Pretzsch HansORCID,Annighöfer Peter

Abstract

Laser scanning has revolutionized the ability to quantify single-tree morphologies and stand structural variables. In this study, we address the issue of occlusion when scanning a spruce (Picea abies (L.) H.Karst.) and beech (Fagus sylvatica L.) forest with a mobile laser scanner by making use of a unique study site setup. We scanned forest stands (1) from the ground only and (2) from the ground and from above by using a crane. We also examined the occlusion effect by scanning in the summer (leaf-on) and in the winter (leaf-off). Especially at the canopy level of the forest stands, occlusion was very pronounced, and we were able to quantify its impact in more detail. Occlusion was not as noticeable as expected for crown-related variables but, on average, resulted in smaller values for tree height in particular. Between the species, the total tree height underestimation for spruce was more pronounced than that for beech. At the stand level, significant information was lost in the canopy area when scanning from the ground alone. This information shortage is reflected in the relative point counts, the Clark–Evans index and the box dimension. Increasing the voxel size can compensate for this loss of information but comes with the trade-off of losing details in the point clouds. From our analysis, we conclude that the voxelization of point clouds prior to the extraction of stand or tree measurements with a voxel size of at least 20 cm is appropriate to reduce occlusion effects while still providing a high level of detail.

Funder

Bavarian State Ministry of Nutrition, Agriculture and Forestry

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3