Abstract
This work aims to investigate the feasibility of employing multi-frequency bioimpedance analysis for hemodynamic assessment. Towards this, we aim to explore one of its implementations, electrical impedance spectroscopy (EIS), for estimating changes in radial artery diameter due to blood flow. Following from our previous investigations, here, we use a commercial device—the Quadra® Impedance Spectroscopy device—for impedance measurements of the forearm of three subjects under normal conditions and occluding the artery with a cuff. This was performed simultaneously with ultrasound measurements as a reference. The impedance spectra were measured over time, yielding waveforms reflecting changes due to blood flow. Contributions from the fat/muscle domains were accounted for using the occluded impedance response, resulting in arterial impedance. A modified relationship was approximated to calculate the diameter from the arterial impedance, which showed a similarity with ultrasound measurements. Comparison with the ultrasound measurements revealed differences in phase and amplitude, primarily due to the approximated relationship between impedance and diameter and neglecting the impedance phase analysis. This work shows the potential of EIS, with improvements, towards estimating blood flow-induced variation in arteries. Further analysis and improvements could help place this technology in mainstream clinical practice for hemodynamic monitoring.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献