Recovered Reverse-Osmosis Water and MgO Nanoparticles for Improved Performance of Solar PV/T Systems

Author:

Singh Shweta1ORCID,Singh Rakesh Kumar1,Kumar Anil2ORCID,Kumar Virendra3ORCID,Tiwari Gopal Nath4

Affiliation:

1. Department of Electronics Engineering, Kamla Nehru Institute of Technology, Sultanpur 228118, India

2. Department of Mechanical Engineering, Kamla Nehru Institute of Technology, Sultanpur 228118, India

3. Department of Mechanical Engineering, Harcourt Butler Technical University, Kanpur 208002, India

4. Bag Energy Research Society, Varanasi 221005, India

Abstract

Domestic RO systems are commonly installed in households for water purification and treatment, typically for drinking water purposes. While RO systems effectively remove impurities, such as dissolved salts, minerals, and contaminants from tap water, they produce a concentrated waste stream known as RO reject. This reject water contains the contaminants that were removed during the RO filtration process. This RO reject can be effectively utilized in other domestic, agricultural, and industrial applications. In this study, the performance of a photovoltaic/thermal (PV/T) system was experimentally examined by employing RO reject and MgO/water-based nano-fluid. Two 165 W polycrystalline solar PV modules were used to compare the performance of a PV/T and a PV module. The performance of the solar PV module was assessed in terms of cell temperature and electrical efficiency using a water- and MgO/water-based PV/T system. Furthermore, the thermal and overall efficiency of the PV/T module was also compared using different base fluids. The effect of the working fluid flow rate (3 LPM, 6 LPM, 9 LPM, and 12 LPM) and variations in the concentrations (0.10 wt.%, 0.15 wt.%, and 0.20 wt.%) of MgO nanoparticles were examined to evaluate the improvement in the performance of the PV/T system. The results indicate that the PV/T system’s cell temperature was significantly reduced, and its electrical, thermal, and overall efficiency increased with an increased flow rate. The optimum concentration of nanoparticles and flow rate were determined to be 0.15 wt.% and 12 LPM, respectively. The findings suggest that MgO/water-based nano-fluids have the potential to enhance the performance of PV/T systems, and this study provides valuable insights for their practical implementation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3