Affiliation:
1. Department of Electronics Engineering, Kamla Nehru Institute of Technology, Sultanpur 228118, India
2. Department of Mechanical Engineering, Kamla Nehru Institute of Technology, Sultanpur 228118, India
3. Department of Mechanical Engineering, Harcourt Butler Technical University, Kanpur 208002, India
4. Bag Energy Research Society, Varanasi 221005, India
Abstract
Domestic RO systems are commonly installed in households for water purification and treatment, typically for drinking water purposes. While RO systems effectively remove impurities, such as dissolved salts, minerals, and contaminants from tap water, they produce a concentrated waste stream known as RO reject. This reject water contains the contaminants that were removed during the RO filtration process. This RO reject can be effectively utilized in other domestic, agricultural, and industrial applications. In this study, the performance of a photovoltaic/thermal (PV/T) system was experimentally examined by employing RO reject and MgO/water-based nano-fluid. Two 165 W polycrystalline solar PV modules were used to compare the performance of a PV/T and a PV module. The performance of the solar PV module was assessed in terms of cell temperature and electrical efficiency using a water- and MgO/water-based PV/T system. Furthermore, the thermal and overall efficiency of the PV/T module was also compared using different base fluids. The effect of the working fluid flow rate (3 LPM, 6 LPM, 9 LPM, and 12 LPM) and variations in the concentrations (0.10 wt.%, 0.15 wt.%, and 0.20 wt.%) of MgO nanoparticles were examined to evaluate the improvement in the performance of the PV/T system. The results indicate that the PV/T system’s cell temperature was significantly reduced, and its electrical, thermal, and overall efficiency increased with an increased flow rate. The optimum concentration of nanoparticles and flow rate were determined to be 0.15 wt.% and 12 LPM, respectively. The findings suggest that MgO/water-based nano-fluids have the potential to enhance the performance of PV/T systems, and this study provides valuable insights for their practical implementation.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献