Multi-Actor Systems in Water–Energy Nexus: Identifying Critical Stakeholders in Floatovoltaic (Floating Photovoltaic) Project

Author:

Sianipar Corinthias P. M.12ORCID,Chao Yi-Meng34ORCID,Hoshino Satoshi12ORCID

Affiliation:

1. Division of Environmental Science and Technology, Kyoto University, Kyoto 606-8502, Japan

2. Department of Global Ecology, Kyoto University, Kyoto 606-8501, Japan

3. Risk Society and Policy Research Center (RSPRC), National Taiwan University (NTU), Taipei 106, Taiwan

4. Graduate School of Global Environmental Studies (GSGES), Kyoto University, Kyoto 606-8501, Japan

Abstract

The intrinsic relation between water and energy has made the water–energy nexus a burgeoning issue in the discussion of sustainable development. Recently, research has begun to pay attention to stakeholders in the nexus. They, however, identified stakeholders as a given without employing methodically scientific processes with rigorous parameters. Filling in the gap, this study presents a heuristic approach to identifying critical stakeholders of multi-actor systems in the water–energy nexus. It involves three sources of influence (social roles, specific concerns, and key problems) along with four other boundary issues (motivation, control, knowledge, legitimacy), forming a matrix of the boundary categories of Critical Systems Heuristics (CSH). This study applied the heuristic analysis to the project of floating photovoltaics installed in a pond in Hyogo, Japan, as the case study. It is a unique case of the water–energy nexus since the location of the floatovoltaic installation is a privately owned pond that is also part of the public landscape and an irrigation source for the surrounding agricultural areas. The results identified two macrogroups of stakeholders (residents and project developers) driven by general interests in the project. They were derivable as overlapping micro-actors interested in more specific issues related to different facets of the project. Overall, conflicting interests in the multi-actor systems indicated deadlocked interactions due to a multidirectional tug-of-war between the microgroups of actors. Conceptually, this study significantly contributes to the literature on the water–energy nexus and stakeholder management. Practically, the approach used offers scientific processes to understand the multi-actor systems and conflicting interests involved in/affected by the nexus, paving the way for more comprehensive resolution processes of water–energy conflicts.

Funder

Kyoto University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3