A Field Experiment for Tracing Lateral Subsurface Flow in a Post-Glacial Hummocky Arable Soil Landscape

Author:

Ehrhardt Annelie1ORCID,Koszinski Sylvia2ORCID,Gerke Horst H.3ORCID

Affiliation:

1. Research Area 1 “Landscape Functioning”, Working Group “Isotope Biogeochemistry & Gas Fluxes”, Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany

2. Research Area 1 “Landscape Functioning”, Working Group “Landscape Pedology”, Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany

3. Research Area 1 “Landscape Functioning”, Working Group “Silicon Biogeochemistry”, Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany

Abstract

Lateral subsurface flow (LSF) is a phenomenon that is widely occurring including the hummocky ground moraine landscape. Due to the heterogeneous structure of the subsurface, transport times of pesticides and nutrients from agricultural areas to adjacent water bodies are difficult to assess. Here, LSF at Luvisol and Regosol plots of an experimental field were studied by applying potassium bromide along a 10 m trench below the plow pan in October 2019. The soil solution was collected in suction cups 3 m downslope of the trench and in April 2021, the soil was sampled down to 1 m depth. Almost no bromide was found in the soil solution except for the 160 cm depth of the Regosol plot after a 541 day period. After the same time, bromide was observed in the 90 cm soil depth directly underneath the application trench of the Luvisol plot. A 3D reconstruction of the subsurface horizon boundaries of the Regosol revealed subsurface heterogeneities such as sand lenses that might have been attributed to the heterogeneous subsurface flow pattern.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3