Influence of Incubation Temperature and Relative Humidity on the Egg Hatchability Pattern of Two-Spotted (Gryllus bimaculatus) and House (Acheta domesticus) Crickets

Author:

Mitchaothai Jamlong1ORCID,Lertpatarakomol Rachakris2,Trairatapiwan Tassanee2,Lukkananukool Achara3

Affiliation:

1. Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand

2. Faculty of Veterinary Medicine, Mahanakorn University of Technology (MUT), Bangkok 10530, Thailand

3. Department of Animal Production Technology and Fisheries, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand

Abstract

This study aimed to determine the influence and optimal conditions of incubation temperature and relative humidity (RH) on the egg hatchability patterns of two-spotted (Gryllus bimaculatus) and house (Acheta domesticus) crickets. Experiment I involved 100 cricket eggs per hatching box for each species, with six replications for each controlled incubation temperature of 23, 25, 27, 29, 30, 31, 32, and 33 °C at 70% RH. Experiment II used all the same procedures as Experiment I, except for incubation temperatures of 29, 30, 31, and 32 °C tested with varied RH levels of 65%, 70%, and 75%. In Experiment I, two-spotted crickets (9.47 ± 1.99 days) exhibited faster hatching than house crickets (13.70 ± 2.78 days). Additionally, the onset of hatching decreased with higher incubation temperatures for both types of crickets. In Experiment II, an incubation temperature of 31 °C and 70% RH resulted in a hatching rate of 79.75% for two-spotted crickets, with hatching beginning in 6 days. For house cricket eggs, the optimal conditions of 30 °C and 65–75% RH led to a peak daily hatching rate of 62.00–65.50% and hatching onset in 12 days. Thus, this study established the optimal incubation temperature and RH for egg hatching of two-spotted and house crickets.

Funder

National Science, Research and Innovation Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3