Affiliation:
1. School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
Abstract
Avian pathogenic Escherichia coli (APEC) constitutes a significant cause of colibacillosis, a localized or systemic inflammatory disorder in avian species, resulting in considerable economic losses within the global poultry industry. SdiA (suppressor of division inhibitor) is a transcription factor recognized as a LuxR homolog in Escherichia coli, regulating various behaviors, including biofilm formation, multidrug resistance, and the secretion of virulence factors. However, the function of SdiA in APEC strains and its correlation with virulence and multidrug resistance remains unknown. This study probed into the function of SdiA by analyzing the effect of sdiA deletion on the transcription profile of an APEC strain. The microarray data revealed that SdiA upregulates 160 genes and downregulates 59 genes, exerting a particularly remarkable influence on the transcription of multiple virulence genes. A series of antibiotic sensitivity tests, biofilm formation assays, motility assays, and transcriptome analyses were performed, while a Normality test and t-test were conducted on the datasets. This research confirmed that SdiA inhibits biofilm formation by 1.9-fold (p-value < 0.01) and motility by 1.5-fold (p-value < 0.01). RT-qPCR revealed that SdiA positively regulates multidrug resistance by upregulating the expression of yafP, cbrA, and eamB. Collectively, the results of this study indicate the role of SdiA in the pathogenesis of APEC by controlling biofilm formation, motility, and multidrug resistance.