Assessment of the Impact of Sand Mining on Bottom Morphology in the Mekong River in An Giang Province, Vietnam, Using a Hydro-Morphological Model with GPU Computing

Author:

Thi Kim Tran,Huong Nguyen Thi Mai,Huy Nguyen Dam Quoc,Tai Pham Anh,Hong Sumin,Quan Tran Minh,Bay Nguyen Thi,Jeong Won-KiORCID,Phung Nguyen Ky

Abstract

Sand mining, among the many activities that have significant effects on the bed changes of rivers, has increased in many parts of the world in recent decades. Numerical modeling plays a vital role in simulation in the long term; however, computational time remains a challenge. In this paper, we propose a sand mining component integrated into the bedload continuity equation and combine it with high-performance computing using graphics processing units to boost the speed of the simulation. The developed numerical model is applied to the Mekong river segment, flowing through Tan Chau Town, An Giang Province, Vietnam. The 20 years from 1999 to 2019 is examined in this study, both with and without sand mining activities. The results show that the numerical model can simulate the bed change for the period from 1999 to 2019. By adding the sand mining component (2002–2006), the bed change in the river is modeled closely after the actual development. The Tan An sand mine in the area (2002–2006) caused the channel to deviate slightly from that of An Giang and created a slight erosion channel in 2006 (−23 m). From 2006 to 2014, although Tan An mine stopped operating, the riverbed recovered quite slowly with a small accretion rate (0.25 m/year). However, the Tan An sand mine eroded again from 2014–2019 due to a lack of sand. In 2014, in the Vinh Hoa communes, An Giang Province, the Vinh Hoa sand mine began to operate. The results of simulating with sand mining incidents proved that sand mining caused the erosion channel to move towards the sand mines, and the erosion speed was faster when there was no sand mining. Combined with high-performance computing, harnessing the power of accelerators such as graphics processing units (GPUs) can help run numerical simulations up to 23x times faster.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3