RETRACTED: Bidirectional Neural Network Model for Glaucoma Progression Prediction

Author:

Hosni Mahmoud Hanan1ORCID,Alabdulkreem Eatedal1ORCID

Affiliation:

1. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

Deep learning models are usually utilized to learn from spatial data, only a few studies are proposed to predict glaucoma time progression utilizing deep learning models. In this article, we present a bidirectional recurrent deep learning model (Bi-RM) to detect prospective progressive visual field diagnoses. A dataset of 5413 different eyes from 3321 samples is utilized as the learning phase dataset and 1272 eyes are used for testing. Five consecutive diagnoses are recorded from the dataset as input and the sixth progressive visual field diagnosis is matched with the prediction of the Bi-RM. The precision metrics of the Bi-RM are validated in association with the linear regression algorithm (LR) and term memory (TM) technique. The total prediction error of the Bi-RM is significantly less than those of LR and TM. In the class prediction, Bi-RM depicts the least prediction error in all three methods in most of the testing cases. In addition, Bi-RM is not impacted by the reliability keys and the glaucoma degree.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Reference33 articles.

1. Global data on visual impairment in the year 2002;Resnikoff;Bull. World Health Organ.,2004

2. Hosni Mahmoud, H.A. (2022). Diabetic Retinopathy Progression Prediction Using a Deep Learning Model. Axioms, 11.

3. Response variability in the visual field: Comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes;Henson;Investig. Ophthalmic. Vis. Sci.,2000

4. An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis;Wang;Investig. Opthalmol. Vis. Sci.,2019

5. A new approach to measure visual field progression in glaucoma patients using variational Bayes linear regression;Murata;Investig. Ophthalmol. Vis. Sci.,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3