Immunocyte Infiltration Analysis and Immunohistochemistry Identify EVL as a Potential Prognostic Biomarker for Pancreatic Cancer

Author:

Du Yan1,Zhu Lin2,Li Xin2,Shi Huaqing1,Jiang Wenkai1ORCID,Zhou Wence13ORCID

Affiliation:

1. The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China

2. The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China

3. Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China

Abstract

Ena-VASP-like (EVL), a member of the Enabled/vasodilator stimulated phosphoprotein family, is functionally expressed in various cancers. This study explored the prognostic value and potential mechanism of EVL in pancreatic cancer (PC). RNA-seq obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to evaluate EVL expression differences, and clinical samples were collected for validation. The prognostic value of EVL was evaluated by survival data obtained from TCGA and clinical samples. The biological pathways involved in EVL were evaluated by functional enrichment analysis such as GO, KEGG, and GSEA. We used immune infiltration analysis to estimate the correlation between EVL and tumor-infiltrating immune cells (TICs). The expression of EVL is down-regulated in PC tissues, which is an independent factor affecting survival time. Survival analysis suggested EVL-high expression was associated with good prognosis in PC patients. The results of the enrichment analysis suggested that the biological function of EVL was closely related to the immune mechanism. Tumor immune infiltration analysis showed that high expression of EVL was accompanied by high levels of immune infiltration. Furthermore, EVL was strongly correlated with the content of immune cells such as CD8+ T cells, B cells, regulatory T cells, CD4+ Tem cells, and follicular Th cells. EVL is a potential independent prognostic marker and immunotherapy target for PC. Mechanistically, EVL may affect the prognosis by extensively promoting immune cell infiltration, including strengthening the anti-tumor immune response of CD8+ T cells.

Funder

National Natural Science Foundation of China

Traditional Chinese Medicine Scientific Research Project of Gansu Province, China

Science and Technology Projects of Chengguan District in Lanzhou

Medical Innovation and Development Project of Lanzhou University

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3