Maresin1 Ameliorates Sepsis-Induced Microglial Neuritis Induced through Blocking TLR4-NF-κ B-NLRP3 Signaling Pathway

Author:

Wu Huiping12,Wang Ying3,Fu Haiyan2,Ji Lili4,Li Na2,Zhang Dan2,Su Longxiang5,Hu Zhansheng12ORCID

Affiliation:

1. School of Medicine, Soochow University, Suzhou 215006, China

2. Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China

3. Operating Room, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China

4. Emergency Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, China

5. Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing 100730, China

Abstract

Objective: Neuroinflammation is a major etiology of cognitive dysfunction due to sepsis. Maresin1 (MaR1), identified as a docosahexaenoic acid (DHA)-derived metabolite from macrophages, has been demonstrated to exhibit potent neuroprotective and anti-inflammatory effects. Nevertheless, detailed functions and molecular mechanism of MaR1 in sepsis-induced cognitive dysfunction has not been fully elucidated. Here, we aimed to investigate potential neuroprotective effects of MaR1 on microglia-induced neuroinflammation in sepsis-induced cognitive impairment and to explore its anti-inflammatory mechanism. Methods: Different doses of MaR1 were administered to septic rats by via tail vein injection. The optimal dose was determined based on the 7-day survival rate of rats from each group. derived from macrophages with both anti-inflammatory to observe the ameliorative effects of MaR1 at optimal doses on cognitive dysfunction in septic rats. The effects of MaR1 on neuroinflammation-mediated microglial activation, neuronal apoptosis, and pro-inflammatory cytokine productions were in vivo and in vitro assayed, using Western blot, ELISA, TUNEL staining, Nissl staining, and the immunofluorescence method. To further elucidate anti-inflammatory machinery of MaR1, protein expressions of NLRP3 inflammatory vesicles and TLR4-NF-κB pathway-related proteins were subjected to Western blot assay. Results: After tail vein injection of MaR1 with different doses (2 ng/g, 4 ng/g, 8 ng/g), the results showed that 4 ng/g MaR1 treatment significantly increased the rats’ 7-day survival rate compared to the CLP controls. Therefore, subsequent experiments set 4 ng/g MaR1 as the optimal dose. Morris water maze experiments confirmed that MaR1 significantly reduced space memory dysfunction in rats. In addition, in CLP rats and LPS-stimulated BV2 microglia, MaR1 significantly reduced activated microglia and pro-inflammatory cytokines levels and neuronal apoptosis. Mechanically, MaR1 inhibits microglia-induced neuroinflammation through suppressing activations of NLRP3 inflammatory vesicles and TLR4-NF-κB signal pathway. Conclusion: Collectively, our findings suggested that MaR1 might be a prospective neuroprotective compound for prevention and treatment in the sepsis process.

Funder

Key R&D project of Liaoning Province

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3