Construction of Osteosarcoma Diagnosis Model by Random Forest and Artificial Neural Network

Author:

Li Sheng1ORCID,Que Yukang1,Yang Rui1,He Peng1,Xu Shenglin1,Hu Yong1

Affiliation:

1. Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

Abstract

Osteosarcoma accounts for 28% of primary bone malignancies in adults and up to 56% in children and adolescents (<20 years). However, early diagnosis and treatment are still inadequate, and new improvements are still needed. Missed diagnoses exist due to fewer traditional diagnostic methods, and clinical symptoms are often already present before diagnosis. This study aimed to develop novel and efficient predictive models for the diagnosis of osteosarcoma and to identify potential targets for exploring osteosarcoma markers. First, osteosarcoma and normal tissue expression microarray datasets were downloaded from the Gene Expression Omnibus (GEO). Then we screened the differentially expressed genes (DEGs) in the osteosarcoma and normal groups in the training group. Next, in order to explore the biologically relevant role of DEGs, Metascape and enrichment analyses were also performed on DEGs. The “randomForest” and “neuralnet” packages in R software were used to select representative genes and construct diagnostic models for osteosarcoma. The next step is to validate the model of the artificial neural network. Then, we performed an immune infiltration analysis by using the training set data. Finally, we constructed a prognostic model using representative genes for prognostic analysis. The copy number of osteosarcoma was also analyzed. A random forest classifier identified nine representative genes (ANK1, TGFBR3, RSF21, HSPB8, ITGA7, RHD, AASS, GREM2, NFASC). HSPB8, RHD, AASS, and NFASC were genes we identified that have not been previously reported to be associated with osteosarcoma. The osteosarcoma diagnostic model we constructed has good performance with areas under the curves (AUCs) of 1 and 0.987 in the training and validation groups, respectively. This study opens new horizons for the early diagnosis of osteosarcoma and provides representative markers for the future treatment of osteosarcoma. This is the first study to pioneer the establishment of a genetic diagnosis model for osteosarcoma and advance the development of osteosarcoma diagnosis and treatment.

Funder

Major projects of Natural Science Foundation of universities in Anhui Province

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3