Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages

Author:

Zheng Qiong,Huang Wenjiang,Cui Ximin,Dong Yingying,Shi Yue,Ma HuiqinORCID,Liu Linyi

Abstract

Yellow rust, a widely known destructive wheat disease, affects wheat quality and causes large economic losses in wheat production. Hyperspectral remote sensing has shown potential for the detection of plant disease. This study aimed to analyze the spectral reflectance of the wheat canopy in the range of 350–1000 nm and to develop optimal spectral indices to detect yellow rust disease in wheat at different growth stages. The sensitive wavebands of healthy and infected wheat were located in the range 460–720 nm in the early-mid growth stage (from booting to anthesis), and in the ranges 568–709 nm and 725–1000 nm in the mid-late growth stage (from filling to milky ripeness), respectively. All possible three-band combinations over these sensitive wavebands were calculated as the forms of PRI (Photochemical Reflectance Index) and ARI (Anthocyanin Reflectance Index) at different growth stages and assessed to determine whether they could be used for estimating the severity of yellow rust disease. The optimal spectral index for estimating wheat infected by yellow rust disease was PRI (570, 525, 705) during the early-mid growth stage with R2 of 0.669, and ARI (860, 790, 750) during the mid-late growth stage with R2 of 0.888. Comparison of the proposed spectral indices with previously reported vegetation indices were able to satisfactorily discriminate wheat yellow rust. The classification accuracy for PRI (570, 525, 705) was 80.6% and the kappa coefficient was 0.61 in early-mid growth stage, and the classification accuracy for ARI (860, 790, 750) was 91.9% and the kappa coefficient was 0.75 in mid-late growth stage. The classification accuracy of the two indices reached 84.1% and 93.2% in the early-mid and mid-late growth stages in the validated dataset, respectively. We conclude that the three-band spectral indices PRI (570, 525, 705) and ARI (860, 790, 750) are optimal for monitoring yellow rust infection in these two growth stages, respectively. Our method is expected to provide a technical basis for wheat disease detection and prevention in the early-mid growth stage, and the estimation of yield losses in the mid-late growth stage.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3