Abstract
The heightened interest in liquid organic hydrogen carriers encourages the development of catalysts suitable for multicycle use. To ensure high catalytic activity and selectivity, the structure–reactivity relationship must be extensively investigated. In this study, high-loaded Ni–Cu catalysts were considered for the dehydrogenation of methylcyclohexane. The highest conversion of 85% and toluene selectivity of 70% were achieved at 325 °C in a fixed-bed reactor using a catalyst with a Cu/Ni atomic ratio of 0.23. To shed light on the relationship between the structural features and catalytic performance, the catalysts were thoroughly studied using a wide range of advanced physicochemical tools. The activity and selectivity of the proposed catalysts are related to the uniformity of Cu distribution and its interaction with Ni via the formation of metallic solid solutions. The method of introduction of copper in the catalyst plays a crucial role in the effectiveness of the interaction between the two metals.
Funder
Russian Science Foundation
Subject
General Materials Science,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献