Green Synthesis of Nanomaterials

Author:

Huston Matthew,DeBella Melissa,DiBella Maria,Gupta AnishaORCID

Abstract

Nanotechnology is considered one of the paramount forefronts in science over the last decade. Its versatile implementations and fast-growing demand have paved the way for innovative measures for the synthesis of higher quality nanomaterials. In the early stages, traditional synthesis methods were utilized, and they relied on both carcinogenic chemicals and high energy input for production of nano-sized material. The pollution produced as a result of traditional synthesis methods induces a need for environmentally safer synthesis methods. As the downfalls of climate change become more abundant, the scientific community is persistently seeking solutions to combat the devastation caused by toxic production methods. Green methods for nanomaterial synthesis apply natural biological systems to nanomaterial production. The present review highlights the history of nanoparticle synthesis, starting with traditional methods and progressing towards green methods. Green synthesis is a method just as effective, if not more so, than traditional synthesis; it provides a sustainable approach to nanomaterial manufacturing by using naturally sourced starting materials and relying on low energy processes. The recent use of active molecules in natural biological systems such as bacteria, yeast, algae and fungi report successful results in the synthesis of various nanoparticle systems. Thus, the integration of green synthesis in scientific research and mass production provides a potential solution to the limitations of traditional synthesis methods.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3