Abstract
Near-eye display (NED) systems for virtual reality (VR) and augmented reality (AR) have been rapidly developing; however, the widespread use of VR/AR devices is hindered by the bulky refractive and diffractive elements in the complicated optical system as well as the visual discomfort caused by excessive binocular parallax and accommodation-convergence conflict. To address these problems, an NED system combining a 5 mm diameter metalens eyepiece and a three-dimensional (3D), computer-generated holography (CGH) based on Fresnel diffraction is proposed in this paper. Metalenses have been extensively studied for their extraordinary capabilities at wavefront shaping at a subwavelength scale, their ultrathin compactness, and their significant advantages over conventional lenses. Thus, the introduction of the metalens eyepiece is likely to reduce the issue of bulkiness in NED systems. Furthermore, CGH has typically been regarded as the optimum solution for 3D displays to overcome limitations of binocular systems, since it can restore the whole light field of the target 3D scene. Experiments are carried out for this design, where a 5 mm diameter metalens eyepiece composed of silicon nitride anisotropic nanofins is fabricated with diffraction efficiency and field of view for a 532 nm incidence of 15.7% and 31°, respectively. Furthermore, a novel partitioned Fresnel diffraction and resample method is applied to simulate the wave propagations needed to produce the hologram, with the metalens capable of transforming the reconstructed 3D image into a virtual image for the NED. Our work combining metalens and CGH may pave the way for portable optical display devices in the future.
Funder
National Natural Science Foundation of China
Beijing Municipal Science and Technology Commission
Subject
General Materials Science,General Chemical Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献