Food Liking-Based Diet Quality Indexes (DQI) Generated by Conceptual and Machine Learning Explained Variability in Cardiometabolic Risk Factors in Young Adults

Author:

Xu Ran,Blanchard Bruce E.,McCaffrey Jeanne M.,Woolley Stephen,Corso Lauren M. L.,Duffy Valerie B.ORCID

Abstract

The overall pattern of a diet (diet quality) is recognized as more important to health and chronic disease risk than single foods or food groups. Indexes of diet quality can be derived theoretically from evidence-based recommendations, empirically from existing datasets, or a combination of the two. We used these methods to derive diet quality indexes (DQI), generated from a novel dietary assessment, and to evaluate relationships with cardiometabolic risk factors in young adults with (n = 106) or without (n = 106) diagnosed depression (62% female, mean age = 21). Participants completed a liking survey (proxy for usual dietary consumption). Principle component analysis of plasma (insulin, glucose, lipids) and adiposity (BMI, Waist-to-Hip ratio) measures formed a continuous cardiometabolic risk factor score (CRFS). DQIs were created: theoretically (food/beverages grouped, weighted conceptually), empirically (grouping by factor analysis, weights empirically-derived by ridge regression analysis of CRFS), and hybrid (food/beverages conceptually-grouped, weights empirically-derived). The out-of-sample CRFS predictability for the DQI was assessed by two-fold and five-fold cross validations. While moderate consistencies between theoretically- and empirically-generated weights existed, the hybrid outperformed theoretical and empirical DQIs in cross validations (five-fold showed DQI explained 2.6% theoretical, 2.7% empirical, and 6.5% hybrid of CRFS variance). These pilot data support a liking survey that can generate reliable/valid DQIs that are significantly associated with cardiometabolic risk factors, especially theoretically- plus empirically-derived DQI.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3