A 3D Approach Using a Control Algorithm to Minimize the Effects on the Healthy Tissue in the Hyperthermia for Cancer Treatment

Author:

Fatigate Gustavo Resende1ORCID,Lobosco Marcelo12ORCID,Reis Ruy Freitas12ORCID

Affiliation:

1. Pós-Graduação em Modelagem Computacional, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n-São Pedro, Juiz de Fora 36036-900, MG, Brazil

2. Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n-São Pedro, Juiz de Fora 36036-900, MG, Brazil

Abstract

According to the World Health Organization, cancer is a worldwide health problem. Its high mortality rate motivates scientists to study new treatments. One of these new treatments is hyperthermia using magnetic nanoparticles. This treatment consists in submitting the target region with a low-frequency magnetic field to increase its temperature over 43 °C, as the threshold for tissue damage and leading the cells to necrosis. This paper uses an in silico three-dimensional Pennes’ model described by a set of partial differential equations (PDEs) to estimate the percentage of tissue damage due to hyperthermia. Differential evolution, an optimization method, suggests the best locations to inject the nanoparticles to maximize tumor cell death and minimize damage to healthy tissue. Three different scenarios were performed to evaluate the suggestions obtained by the optimization method. The results indicate the positive impact of the proposed technique: a reduction in the percentage of healthy tissue damage and the complete damage of the tumors were observed. In the best scenario, the optimization method was responsible for decreasing the healthy tissue damage by 59% when the nanoparticles injection sites were located in the non-intuitive points indicated by the optimization method. The numerical solution of the PDEs is computationally expensive. This work also describes the implemented parallel strategy based on CUDA to reduce the computational costs involved in the PDEs resolution. Compared to the sequential version executed on the CPU, the proposed parallel implementation was able to speed the execution time up to 84.4 times.

Funder

UFJF

CAPES

CNPq

FAPEMIG

FINEP

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference48 articles.

1. WHO (2022, October 04). World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer.

2. OPAS (2022, October 04). Organização Pan-Americana da Saúde. Available online: https://www.paho.org/pt/topicos/cancer.

3. Magnetic nanoparticle hyperthermia in cancer treatment;Giustini;Nano Life,2010

4. Moros, E. (2012). Physics of Thermal Therapy: Fundamentals and Clinical Applications, CRC Press.

5. Enhancement in treatment planning for magnetic nanoparticle hyperthermia: Optimization of the heat absorption pattern;Salloum;Int. J. Hyperth.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3