Valorization of Industrial Vegetable Waste Using Dilute HCl Pretreatment

Author:

Blue Donald,Fortela Dhan,Holmes William,LaCour David,LeBoeuf Shayla,Stelly Cody,Subramaniam Ramalingam,Hernandez Rafael,Zappi Mark,Revellame EmmanuelORCID

Abstract

A solid vegetable waste stream was subjected to dilute acid (HCl) pretreatment with the goal of converting the waste into a form that is amenable to biochemical processes which could include microbial lipids, biohydrogen, and volatile organic acids production. Specifically, this study was conducted to identify the most suitable pretreatment condition that maximizes the yield or concentration of sugars while minimizing the production of compounds which are inhibitory to microbes (i.e., furfural, hydroxymethylfurfural, and organic acids). Temperatures from 50–150 °C and HCl loading from 0–7 wt % were studied to using an orthogonal central composite response surface design with eight center points. The effects of the variables under study on the resulting concentrations of sugars, organic acids, and furans were determined using the quadratic response surface model. Results indicated that the biomass used in this study contains about 5.7 wt % cellulose and 83.8 wt % hemicellulose/pectin. Within the experimental design, the most suitable pretreatment condition was identified to be at 50 °C and 3.5 wt % HCl. A kinetic study at this condition indicated process completion at 30 mins. that produced a hydrolyzate that contains 31.30 ± 0.44 g/L sugars and 7.40 ± 0.62 g/L organic acids. At this condition, a yield of ~0.47 g sugar/g of dry solid vegetable waste was obtained. The absence of furans suggests the suitability of the resulting hydrolyzate as feedstock for biochemical processes. The results suggested that the sugar concentration of the pretreated biomass is highly affected by the presence of other compounds such as amines, amino acids, and proteins. The effect however, is minimal at low levels of HCl where the highest total sugar production was observed.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference56 articles.

1. Fruit & Vegetable Processing Industry Profile http://www.firstresearch.com/Industry-Research/Fruit-and-Vegetable-Processing.html

2. Fruit and Vegetable Processing Industries and Environment;Kumar,2004

3. Anaerobic digestion of onion waste by means of rumen microorganisms

4. Utilization of Onion Solid Waste as Feedstock for Biogas Production;Ligisan;Asian J. Appl. Sci.,2016

5. Natural gas prices, electric generation investment, and greenhouse gas emissions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3