Coupling Analytical Models and Machine Learning Methods for Fast and Reliable Resolution of Effects in Multifrequency Eddy-Current Sensors

Author:

Kucheryavskiy SergeyORCID,Egorov Alexander,Polyakov Victor

Abstract

Eddy current (EC) measurements, widely used for diagnostics of conductive materials, are highly dependent on physical properties and geometry of a sample as well as on a design of an EC-sensor. For a sensor of a given design, the conductivity and thickness of a sample as well as the gap between the sample and the sensor (lift-off) are the most influencing parameters. Estimation of these parameters, based on signals acquired from the sensor, is quite complicated in case when all three parameters are unknown and may vary. In this paper, we propose a machine learning based approach for solving this problem. The approach makes it possible to avoid time and resource-consuming computations and does not require experimental data for training of the prediction models. The approach was tested using independent sets of measurements from both simulated and real experimental data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3