Contribution to the Understanding of the Interaction between a Polydopamine Molecular Imprint and a Protein Model: Ionic Strength and pH Effect Investigation

Author:

Tlili AmalORCID,Attia Ghada,Khaoulani Sohayb,Mazouz Zouhour,Zerrouki ChoukiORCID,Yaakoubi Nourdin,Othmane Ali,Fourati NajlaORCID

Abstract

Several studies were devoted to the design of molecularly imprinted polymer (MIP)-based sensors for the detection of a given protein. Here, we bring elements that could contribute to the understanding of the interaction mechanism involved in the recognition of a protein by an imprint. For this purpose, a polydopamine (PDA)-MIP was designed for bovine serum albumin (BSA) recognition. Prior to BSA grafting, the gold surfaces were functionalized with mixed self-assembled monolayers of (MUDA)/(MHOH) (1/9, v/v). The MIP was then elaborated by dopamine electropolymerization and further extraction of BSA templates by incubating the electrode in proteinase K solution. Three complementary techniques, electrochemistry, zetametry, and Fourier-transform infrared spectrometry, were used to investigate pH and ionic strength effects on a MIP’s design and the further recognition process of the analytes by the imprints. Several MIPs were thus designed in acidic, neutral, and basic media and at various ionic strength values. Results indicate that the most appropriate conditions, to achieve a successful MIPs, were an ionic strength of 167 mM and a pH of 7.4. Sensitivity and dissociation constant of the designed sensor were of order of (3.36 ± 0.13) µA·cm−2·mg−1·mL and (8.56 ± 6.09) × 10−11 mg/mL, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3