Abstract
Nitrogen is an important indicator for monitoring wheat growth. The rapid development and wide application of non-destructive detection provide many approaches for estimating leaf nitrogen content (LNC) in wheat. Previous studies have shown that better results have been obtained in the estimation of LNC in wheat based on spectral features. However, the lack of automatically extracted features leads to poor universality of the estimation model. Therefore, a feature fusion method for estimating LNC in wheat by combining spectral features with deep features (spatial features) was proposed. The deep features were automatically obtained with a convolutional neural network model based on the PyTorch framework. The spectral features were obtained using spectral information including position features (PFs) and vegetation indices (VIs). Different models based on feature combination for evaluating LNC in wheat were constructed: partial least squares regression (PLS), gradient boosting decision tree (GBDT), and support vector regression (SVR). The results indicate that the model based on the fusion feature from near-ground hyperspectral imagery has good estimation effect. In particular, the estimation accuracy of the GBDT model is the best (R2 = 0.975 for calibration set, R2 = 0.861 for validation set). These findings demonstrate that the approach proposed in this study improved the estimation performance of LNC in wheat, which could provide technical support in wheat growth monitoring.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献