Biomechanical Study of the Osteoporotic Spine Fracture: Optical Approach

Author:

Sopon Mircea,Oleksik ValentinORCID,Roman Mihai,Cofaru Nicolae,Oleksik MihaelaORCID,Mohor Cosmin,Boicean Adrian,Fleaca RaduORCID

Abstract

Background and objectives: Osteoporotic spine fractures represent a significant factor for decreasing quality of life in the elderly female population. Understanding the mechanisms involved in producing these fractures can improve their prevention and treatment. This study presents a biomechanical method to produce a vertebral fracture, conducted on a human spine segment, observing the displacements and strains in the intervertebral disc, endplate, and vertebral body. Materials and Methods: We performed two tests, one corresponding to an extension loading, and the second to an axial loading. Results: The maximum displacement in the target vertebral body presented higher values in the case of the extension as compared to the axial strain where it mainly occurred after the fracture was produced. The strains occurred simultaneously on both discs. In the case of the axial strain, due to the occurrence of the fracture, the maximum value was recorded in the spine body, while in the case of the extensions, it occurred in the neural part of the upper disc. The advantage of this method was that the entire study was an experiment, using optical methods, increasing the precision of the material data input. Conclusions: The research method allowed recording in real time of a larger amount of data from the different components of the spine segment. If there was an extension component of the compression force at the moment of the initial loading, part of this load was absorbed by the posterior column with higher mechanical resistance. After the maximum capacity of the absorption was reached, in both situations the behavior was similar.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3