Neutron Star–Dark Matter Admixed Objects in the Mass Gap Region

Author:

Vikiaris Michael1ORCID

Affiliation:

1. Department of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

To this day, the nature of dark matter (DM) remains elusive despite all our efforts. This type of matter has not been directly observed, so we infer its gravitational effect. Since galaxies and supermassive objects like these are most likely to contain DM, we assume that dense objects such as neutron stars (NSs) are also likely to host DM. The NS is considered the best natural laboratory for testing theories and collecting observational data. We mainly focus on two types of DM particles, fermions and bosons, with a mass range of [0.01–1.5] GeV and repulsive interactions of about [10−4–10−1] MeV−1. Using a two-fluid model to solve the TOV equations, we find stable configurations that span hundreds of kilometers and weigh tens or even hundreds of solar masses. To visualize results, we think of a giant invisible compact DM object and the NS in the center as the core, the only visible part. Stability criteria are met for these configurations, so collapsing into a black hole is unlikely. We go further and use this work for smaller formations that exist inside the mysterious Mass Gap. We also find stable configurations of 3–4 solar masses, with NS-DM mixing capable of describing the mass gap. Regardless, the present theoretical prediction, if combined with corresponding observations, could shed light on the existence of DM and even more on its fundamental properties.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3