Abstract
In this article, the general solution of the tachyonic Klein–Gordon equation is obtained as a Fourier integral performed on a suitable path in the complex ω-plane. In particular, it is proved that this solution does not contain any superluminal components under the given boundary conditions. On the basis of this result, we infer that all possible spacelike wave equations describe the dynamics of subluminal particles endowed with imaginary mass. This result is validated for the Chodos equation, used to describe the hypothetical superluminal behaviour of the neutrino. In this specific framework, it is proved that the wave packet propagates in spacetime with subluminal group velocities and that it behaves as a localized wave for sufficiently small energies.
Reference31 articles.
1. Simplified deduction of the field and the forces of an electron, moving in a given way;Sommerfeld;Proc. Amst. Acad.,1904
2. Electrical Papers;Heaviside,1892
3. Oliver Heaviside: an accidental time traveller
4. “Meta” Relativity
5. Particles beyond the light barrier
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献