Towards Uncovering Dark Matter Effects on Neutron Star Properties: A Machine Learning Approach

Author:

Thakur Prashant1ORCID,Malik Tuhin2ORCID,Jha Tarun Kumar1ORCID

Affiliation:

1. Department of Physics, BITS-Pilani, K. K. Birla Goa Campus, Sancoale 403726, Goa, India

2. CFisUC, Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal

Abstract

Over the last few years, researchers have become increasingly interested in understanding how dark matter affects neutron stars, helping them to better understand complex astrophysical phenomena. In this paper, we delve deeper into this problem by using advanced machine learning techniques to find potential connections between dark matter and various neutron star characteristics. We employ Random Forest classifiers to analyze neutron star (NS) properties and investigate whether these stars exhibit characteristics indicative of dark matter admixture. Our dataset includes 32,000 sequences of simulated NS properties, each described by mass, radius, and tidal deformability, inferred using recent observations and theoretical models. We explore a two-fluid model for the NS, incorporating separate equations of state for nucleonic and dark matter, with the latter considering a fermionic dark matter scenario. Our classifiers are trained and validated in a variety of feature sets, including the tidal deformability for various masses. The performance of these classifiers is rigorously assessed using confusion matrices, which reveal that NS with admixed dark matter can be identified with approximately 17% probability of misclassification as nuclear matter NS. In particular, we find that additional tidal deformability data do not significantly improve the precision of our predictions. This article also delves into the potential of specific NS properties as indicators of the presence of dark matter. Radius measurements, especially at extreme mass values, emerge as particularly promising features. The insights gained from our study are pivotal for guiding future observational strategies and enhancing the detection capabilities of dark matter in NS. This study is the first to show that the radii of neutron stars at 1.4 and 2.07 solar masses, measured using NICER data from pulsars PSR J0030+0451 and PSR J0740+6620, strongly suggest that the presence of dark matter in a neutron star is more likely than only hadronic composition.

Funder

Fundação para a Ciência e a Tecnologia, I.P, Portugal

FCT—Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3