Searching for Dark Matter Axions via Atomic Excitations

Author:

Vergados J. D.1,Cohen S.1ORCID,Avignone F. T.2,Creswick R.2

Affiliation:

1. Department of Physics, School of Sciences, University of Ioannina, GR 451 10 Ioannina, Greece

2. Department of Physics and Astronomy, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA

Abstract

Axions can be considered as good dark matter candidates. The detection of such light particles can be achieved by observing axion-induced atomic excitations. The target is in a magnetic field so that the m-degeneracy is removed, and the energy levels can be suitably adjusted. Using an axion-electron coupling indicated by the limit obtained by the Borexino experiment, which is quite stringent, reasonable axion absorption rates have been obtained for various atomic targets The obtained results depend, of course, on the atom considered through the parameters ϵ (the spin−orbit splitting) as well as δ ( the energy splitting due to the magnetic moment interaction). This assumption allows axion masses in the tens of μeV if the transition occurs between members of the same multiplet, i.e., |J1,M1=−J1⟩→|J1,M1=−J+1⟩,J1≠0, and axion masses in the range 1 meV–1 eV for transitions of the spin−orbit splitting type |J1,M=−J1⟩→|J2,M2=−J1+q⟩,q=−1,0,1, i.e., three types of transition. The axion mass that can be detected is very close to the excitation energy involved, which can vary by adjusting the magnetic field. Furthermore, since the axion is absorbed by the atom, the calculated cross-section exhibits the behavior of a resonance, which can be exploited by experiments to minimize any background events.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),Astronomy and Astrophysics,Nuclear and High Energy Physics

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3